Development and Characterization of a Laser-Induced Acoustic Desorption Source

Image credit: Zhipeng Huang

Abstract

A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a nonthermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.

Publication
In Analytical Chemistry
Click the Cite button above to import publication metadata into your reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary information can be found here.

Zhipeng Huang
Zhipeng Huang
Senior Research Associate

My research interests include ultrafast electron/X-ray diffraction, ultrafast spectroscopies, non-linear optics, (ultrafast) chemical and physical dynamics at surface or interface, etc.